

 Navigation

 	
 index

 	Moksha 1.0.0 documentation

 Moksha 1.0.0 documentation

 Welcome! This is
 the documentation for Moksha
 1.0.0, last updated Sep 25, 2014.

 	
 The Vision

 High-level goals and concepts

 Getting Started

 Instructions for diving in // tutorials

 Plugin Entry Points

 Details on plugging in various components

 Messaging

 Moksha's real-time messaging layer

 Development

 A handbook for hacking on Moksha

 Moksha Labs

 Experimental apps, widgets, and middleware

 	
 The Architecture

 Features of and the technology behind them

 Quickstart Templates

 Quickly create Moksha components

 WSGI Middleware

 A description of Moksha's WSGI middleware

 Using the Live Socket outside of Moksha

 Hook any web page up to your message broker

 Deployment

 Recipies for deploying and scaling Moksha

 Demo Dashboard

 A real-time demo Moksha dashboard

 Indices and tables:

 	
 General Index

 all functions, classes, terms

 Global Module Index

 quick access to all modules

 	
 Search page

 search this documentation

 Complete Table of Contents

 lists all sections and subsections

 Meta information:

 	
 Homepage

 	
 Reporting bugs

 	
 Active Tickets

 	
 Timeline

 	
 Roadmap

 	
 Wiki

 	
 Mailing List

 	
 Source Code

 	
 License

 	
 Copyright

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

The Vision

	What is Moksha?
	A Platform

	A Framework

	An Architecture

	A Hub

	Data Aggregation

	Data Interpretation
	Live streams

	Consumers

	Extension Points

	Data Persistence

	Data Visualization
	Live Widgets

	Scalability

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

 	The Vision

What is Moksha?

In their totality, Moksha’s components make it a platform, framework,
architecture, and hub.

A Platform

A highly scalable platform for creating dashboards of live collaborative
widgets. Moksha makes it simple for these widgets to extract and extend data
from arbitrary resources in an intuitive and efficient manner.

A Framework

Compiled from the best-of-breed components, Moksha applications are written
using stable pre-existing modules that allow for the rapid creation of powerful
applications. It is designed to allow non-developers to easily develop
applications in isolation, without worrying about the under/over-lying software
stack.

An Architecture

Moksha brings many existing technologies together to create a next-generation
web architecture that is designed to simplify the creation of rich,
powerful, live web applications that can easily bridge existing services.

A Hub

Moksha also acts as a live notification hub that allows people and other
applications and services to create, publish, and subscribe to arbitrary
message streams.

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

 	The Vision

Data Aggregation

Moksha provides many ways to acquire data in an efficient manner.

Moksha can communicate with various message brokers, using the AMQP [http://amqp.org], STOMP [http://stomp.codehaus.org/Protocol],
and/or 0mq [http://www.zeromq.org/]
protocols. It also provides a simple API for producing and consuming messages,
as well as allowing widgets to subscribe to live message streams within the
users web browser. It provides an abstraction over the different messaging
technologies.

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

 	The Vision

Data Interpretation

Moksha provides various mechanisms that allow applications to more easily interpret
dynamic data and act on it.

Live streams

Any data source, even if moksha has to occasionally poll it, can be displayed
as a ‘live’ widget. Producers can also easily expose
themselves through an AMQP/STOMP message queue or 0mq message filter, allowing
other applications and services to interact with new data, as it is discovered.

Consumers

Moksha allows plugins to monitor arbitrary message “topics”, giving
developers the ability to register actions on arbitrary events. Consumers (when
designed well) form elementary building blocks and can be strung in a
conceptual pipeline not unlike Unix programs.

Extension Points

Moksha gives developers the ability to add additional functionality to predictable
patterns found within dynamic data streams. For example, an extension point
could find all occurences of known project names within a data feed, and easily
turn them into a dynamic hover menu that could display related data.

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

 	The Vision

Data Persistence

Moksha is designed to wield dynamic data from arbitrary resources. However, it
is intended to be “backend agnostic” when it comes to data persistence.

When configured, the moksha.wsgi.middleware.MokshaMiddleware
can automatically handle setting up SQLAlchemy database engines and
initializing tables for all application models.

You can conceivably enable any storage backend from memcached, to zodb, to git.

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

 	The Vision

Data Visualization

Moksha makes it simple to write widgets that can efficiently acquire data in
“real-time”, and display it to the user.

Live Widgets

Moksha provides a moksha.wsgi.widgets.api.LiveWidget class that
allows developers to create widgets that can subscribe to message “topics”.
Upon arrival of new messages, Moksha will automatically pass this data to your
widget, allowing you to create rich “real-time” web applications.

As mentioned before, Moksha supports a number of underlying transports for this
including COMET (with a full javascript in-browser AMQP library) and
the soon-to-be-standard Websocket protocol.

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

 	The Vision

Scalability

The architecture is designed to make it extremely scalable yet
dead-simple to hack on. This means that you could potentially run the entire
platform on your laptop, or within a cloud.

The following architecture components can be made redundant to scale in a
production environment:

	WSGI frontends

	Orbited proxies

	AMQP message brokers

	0mq message fabric

	Moksha hub (Feed fetchers / Data pollers / AMQP hooks & triggers / WebSocket
Server)

	memcached daemons

	Databases

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

Moksha Architecture

	Moksha Features
	WSGI Middleware Stack

	Messaging Hub

	Low-latency Browser Socket

	Plugin Infrastructure

	Widget Creation API

	The technology that powers Moksha
	Python

	Twisted

	ToscaWidgets2

	Templating language of your choice

	jQuery

	Orbited

	js.io

	AMQP/Qpid

	0mq

	Architecture Interaction

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

 	Moksha Architecture

Moksha Features

WSGI Middleware Stack

Moksha provides a WSGI [http://wsgi.org] (PEP 333 [http://www.python.org/dev/peps/pep-0333/]) compliant application and middleware [http://www.wsgi.org/wsgi/Middleware_and_Utilities] stack

Moksha was once highly coupled with the TurboGears2 framework, but has since
been separated. You can concievably use Moksha’s WSGI middleware and Widget
API with any WSGI framework such as TurboGears2, Pyramid, or
Flask.

See also

	Moksha Middleware

	Moksha+TurboGears2 - Hello World Tutorial

	Moksha+Pyramid - Hello World Tutorial

	Moksha+Flask - Hello World Tutorial

Messaging Hub

Moksha provides a message hub that allows for other applications, services, or users to communicate over a low-latency topic-based publish/subscribe message bus. It’s designed in such a way as to facilitate a variety of different message flows, allowing for a combination of different message queueing brokers and protocols.

Out of the box, Moksha utilizes MorbidQ [http://www.morbidq.com/], a lightweight message queue for bundled deployment, for it’s message queueing needs. With a 1-line change to Moksha’s configuration file, you can integrate it with an existing AMQP [http://amqp.org/] broker, such as Qpid [http://incubator.apache.org/qpid/] or RabbitMQ [http://rabbitmq.com]. With similarly small configuration changes, you can integrate it with a 0mq [http://www.zeormq.org] messaging fabric.

See also

	The Moksha Hub

	Producers

	Consumers

Low-latency Browser Socket

Moksha integrates with Orbited [http://orbited.org], a highly-scalable
server that allows for asynchronous browser <-> server communication (Comet). Moksha
then makes it simple to create LiveWidgets that can publish and
subscribe to arbitrary message topics in the The Moksha Hub. This
allows for the creation of very rich live web applications.

Moksha also packs a built-in WebSocket server and Live Widget mixin as an
alternative to the Orbited (Comet) pattern. The WebSocket pattern is compatible
with only the 0mq messaging backend.

Plugin Infrastructure

Moksha offers a highly-scalable plugin infrastructure that transparently
handles initializing, dispatching, manipulating, and scaling applications and
widgets – allowing people to rapidly innovate without worrying about the
over or under-lying software architecture.

See also

	Moksha Plugin Entry Points

	Moksha Quickstart Templates

Widget Creation API

ToscaWidgets [http://toscawidgets.org] provides a powerful API for creating
reusable “Widgets”, which are essentially just bundles of HTML, JavaScript,
CSS, and render-time logic. Moksha once supported tw1 as well as tw2, but now
supports only the later for simplicity’s sake.

Moksha also provides a variety of other Widgets, including a Live Widgets
API for creating real-time message-driven widgets that can publish and
subscribe to message Topics.

See also

Widgets

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

 	Moksha Architecture

The technology that powers Moksha

Python

An high-level interpreted, interactive, object-oriented programming language.

Twisted [http://twistedmatrix.com]

Twisted is an event-driven networking engine written in Python. It is the core engine for the The Moksha Hub, which reacts to incoming messages (Consumers), runs our Producers, and drives the WebSocket Server (if it is enabled).

ToscaWidgets2 [http://toscawidgets.org]

The powerful API for creating reusable “Widgets”, which are essentially just
bundles of HTML, JavaScript, CSS, and render-time logic. ToscaWidgets2 also
provides a piece of WSGI middleware that handles intelligent resource
inejection.

Templating language of your choice

We prefer Mako [http://www.makotemplates.org/] first and
Genshi [http://genshi.edgewall.org/] second,
powerful templating languages that can be used for widgets or other
applications. Other templating languages are possible.

jQuery [http://jquery.com]

jQuery is a fast and concise JavaScript Library that simplifies HTML document
traversing, event handling, animating, and Ajax interactions for rapid web
development. jQuery is designed to change the way that you write JavaScript.

Orbited [http://orbited.org]

Real-time communication for the web browser. Orbited provides a pure
JavaScript/HTML socket in the browser. It is a web router and firewall that
allows you to integrate web applications with arbitrary back-end systems.

js.io [http://js.io]

Simplifies creating rich web applications by providing direct integration with
open protocols.

AMQP [http://amqp.org/]/Qpid [http://incubator.apache.org/qpid/]

AMQP [http://amqp.org/] is an open Internet Protocol for Business Messaging.
Qpid [http://incubator.apache.org/qpid/] is a message broker daemon that
receives, stores, and routes messages using the AMQP protocol.

0mq [http://www.zeromq.org/]

0mq [http://www.zeromq.org/] is a socket library that acts as a concurrency
framework. Think “spicy sockets on steroids”. It is one the pluggable
messaging backends for the The Moksha Hub alongside AMQP and STOMP.

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

 	Moksha Architecture

Architecture Interaction

[image: ../_images/moksha-architecture.png]

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

Getting Started with Moksha

There are currently two ways of installing and running Moksha.

	Setting up a Moksha RPM & mod_wsgi environment (Fedora, RHEL, CentOS)

	Virtualenv installation (Other Linux distros, OSX, Windows, etc)

Once you have Moksha installed, there are many ways to start using it.

	Moksha+TurboGears2 - Hello World Tutorial

	Moksha+Pyramid - Hello World Tutorial

	Moksha+Flask - Hello World Tutorial

	Using Moksha’s real-time pipes outside of Python

	Moksha Quickstart Templates

	Moksha Plugin Entry Points

	Widgets

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

 	Getting Started with Moksha

Setting up a Moksha RPM & mod_wsgi environment (Fedora, RHEL, CentOS)

Installing the Moksha Apache/mod_wsgi server

$ sudo yum install moksha-{server,hub,docs}

Note

The above setup does not install any apps. To duplicate the moksha
dashboard demo, you can yum install moksha*

Running Moksha

$ sudo /sbin/service httpd restart

Running Orbited

Out of the box Orbited comes with a very minimal configuration

Copy over Moksha’s Orbited configuration:

cp /etc/moksha/orbited.cfg /etc/orbited.cfg

Note

Moksha’s Orbited configuration enables the MorbidQ STOMP message broker by default,
for ease of development. This can be disabled by commenting out the line stomp://:61613
and the line under the [access] section.

Starting the Orbited daemon

service orbited start

Note

You can also start orbited by hand by running orbited -c /etc/moksha/orbited.cfg

Running the Moksha Hub

service moksha-hub start

Install the dependencies and setup your RPM tree

This step is only necessary if you plan on building moksha apps.

$ sudo yum install rpmdevtools
$ rpmdev-setuptree
$ sudo yum-builddep -y moksha

Watching the logs

tail -f /var/log/httpd/moksha_{access,error}_log
tail -f /var/log/moksha/moksha-hub.log

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

 	Getting Started with Moksha

Virtualenv installation (Other Linux distros, OSX, Windows, etc)

This guide will help quickly get you up and running with a local copy of
Moksha. It will run the Moksha WSGI application using the Paste threaded http
server, a single Orbited socket-proxy daemon with an embeded MorbidQ stomp message broker,
SQLite SQLAlchemy and Feed databases, and an in-memory cache. This setup is
meant to be dead-simple to get up and running, and is not designed for
production deployments.

This installation method has been tested with OSX, Fedora, and RHEL.
See the Setting up a Moksha RPM & mod_wsgi environment (Fedora, RHEL, CentOS) for a deploying with RPM and mod_wsgi.

Installing the necessary dependencies

You’ll need the virtualenv [http://pypi.python.org/pypi/virtualenv] package.

For Fedora/Red Hat/CentOS based environments:

yum -y install python-virtualenv gcc openssl-devel zeromq-devel
yum-builddep -y python-lxml pyOpenSSL python-sqlite2

On Ubuntu/Debian:

apt-get install git python-dev python-virtualenv zeromq-dev

Install moksha

$ virtualenv myenv
$ pip install moksha mdemos.server mdemos.menus mdemos.metrics

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

 	Getting Started with Moksha

Moksha+TurboGears2 - Hello World Tutorial

Note

You can find the source for this tutorial on github [http://github.com/mokshaproject/moksha-turbogears2-hello_world].

Bootstrapping

Set up a virtualenv and install Moksha and TurboGears2 (install
virtualenvwrapper [http://pypi.python.org/pypi/virtualenvwrapper] if you haven’t already).

$ mkvirtualenv tutorial
$ pip install -i http://tg.gy/current tg.devtools
$ pip install moksha.wsgi moksha.hub

Use paster to setup the default TurboGears2 quickstart, install dependencies,
and verify that its working.

$ paster quickstart --auth --mako --sqlalchemy -p tutorial tutorial
$ cd tutorial/
$ python setup.py develop
$ nosetests
$ paster setup-app development.ini
$ paster serve development.ini

Visit http://localhost:8080 to check it out. Success.

Enable ToscaWidgets2

Some versions of TurboGears2 start with ToscaWidgets1 turned on by default.
You’ll want to disable that and enable ToscaWidgets2.

Edit tutorial/config/app_cfg.py and add the following two lines to the bottom.

base_config.use_toscawidgets = False
base_config.use_toscawidgets2 = True

Enabling the Moksha Middleware

Edit tutorial/config/middleware.py and remove the line that reads
app = make_base_app(global_conf, full_stack=True, **app_conf). In its
place, put the following

from moksha.wsgi.middleware import make_moksha_middleware
wrap_app = lambda app: make_moksha_middleware(app, app_conf)
app = make_base_app(global_conf, full_stack=True,
 wrap_app=wrap_app, **app_conf)

See also

	Moksha Middleware

Provide some configuration for Moksha

Edit development.ini and add the following lines under
the [app:main] section:

moksha.domain = localhost

moksha.livesocket = True
moksha.livesocket.backend = websocket
moksha.livesocket.websocket.port = 9998

moksha.socket.notify = True

zmq_enabled = True
zmq_strict = False
zmq_publish_endpoints = tcp://*:3000
zmq_subscribe_endpoints = tcp://127.0.0.1:3000

Your first Polling Producer

Add a new file in tutorial/producers.py. In it, add the following definition:

import datetime
import moksha.hub.api.producer

class HelloWorldProducer(moksha.hub.api.producer.PollingProducer):
 frequency = datetime.timedelta(seconds=2)

 def poll(self):
 self.send_message('hello_world', "Hello World!")

As well, edit setup.py and modify the entry_points section to include a
declaration of this new producer like so:

[moksha.producer]
hello = tutorial.producers:HelloWorldProducer

Open up a second terminal, activate your virtualenv with workon
tutorial and run the moksha-hub:

$ workon tutorial
$ python setup.py develop
$ moksha-hub

This will start up the hub which should pick up and load your
HelloWorldProducer. Keep this running in your second terminal
as you go on to create the frontend components.

Your first LiveWidget

Create a new file in tutorial/widgets.py. In it, add the following
definition:

import moksha.wsgi.widgets.api
import tw2.jqplugins.gritter

class PopupNotification(moksha.wsgi.widgets.api.LiveWidget):
 topic = "*"
 onmessage = "$.gritter.add({'title': 'Received', 'text': json});"
 resources = moksha.wsgi.widgets.api.LiveWidget.resources + \
 tw2.jqplugins.gritter.gritter_resources
 backend = "websocket"

 # Don't actually produce anything when you call .display() on this widget.
 inline_engine_name = "mako"
 template = ""

You’ll need to expose this widget and the moksha global resources to your
templates. You could do this with some logic in a controller, but instead
we’ll just stuff it on every page for simplicity here.

Edit tutorial/lib/base.py and add the following inside the __call__
method:

import tutorial.widgets
from moksha.wsgi.ext.turbogears import global_resources

tmpl_context.notification_widget = tutorial.widgets.PopupNotification
tmpl_context.moksha_global_resources = global_resources

Finally, display the widget on your page by editing
tutorial/templates/master.mak and adding the following at the end but just
inside of the </body> tag:

${tmpl_context.notification_widget.display() |n}
${tmpl_context.moksha_global_resources() | n}

Go restart your paster server and check out http://localhost:8080 again.
You should see popups from your PollingProducer.

See also

	Live Widgets

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

 	Getting Started with Moksha

Moksha+Pyramid - Hello World Tutorial

Note

You can find the source for this tutorial on github [http://github.com/mokshaproject/moksha-pyramid-hello_world].

Bootstrapping

Set up a virtualenv and install Moksha and Pyramid (install
virtualenvwrapper [http://pypi.python.org/pypi/virtualenvwrapper] if you haven’t already).

$ mkvirtualenv tutorial
$ pip install pyramid
$ pip install moksha.wsgi moksha.hub
$ # Also, install weberror for kicks.
$ pip install weberror

Use pcreate to setup a Pyramid scaffold, install dependencies,
and verify that its working. I like the alchemy scaffold, so we’ll use that
one.

$ pcreate -t alchemy tutorial
$ cd tutorial/
$ rm production.ini # moksha-hub gets confused when this is present.
$ python setup.py develop
$ initialize_tutorial_db development.ini
$ pserve --reload development.ini

Visit http://localhost:6543 to check it out. Success.

Enable ToscaWidgets2 and Moksha Middlewares

Go and edit development.ini. There should be a section at the top named
[app:main]. Change that to [app:tutorial]. Then, just above the
[server:main] section add the following three blocks:

[pipeline:main]
pipeline =
 egg:WebError#evalerror
 tw2
 moksha
 tutorial

[filter:tw2]
use = egg:tw2.core#middleware

[filter:moksha]
use = egg:moksha.wsgi#middleware

You now have three new pieces of WSGI middleware floating under your pyramid
app. Neat! Restart pserve and check http://localhost:6543 to make sure
its not crashing.

See also

	Moksha Middleware

Provide some configuration for Moksha

Edit development.ini and add the following lines in the [app:tutorial] section. Do it just under the sqlalchemy.url line:

##moksha.domain = live.example.com
moksha.domain = localhost

moksha.notifications = True
moksha.socket.notify = True

moksha.livesocket = True
moksha.livesocket.backend = websocket
#moksha.livesocket.reconnect_interval = 5000
moksha.livesocket.websocket.port = 9998

zmq_enabled = True
#zmq_strict = True
zmq_publish_endpoints = tcp://*:3000
zmq_subscribe_endpoints = tcp://127.0.0.1:3000

Your first Polling Producer

Add a new file in tutorial/producers.py. In it, add the following definition:

import datetime
import moksha.hub.api.producer

class HelloWorldProducer(moksha.hub.api.producer.PollingProducer):
 frequency = datetime.timedelta(seconds=2)

 def poll(self):
 self.send_message('hello_world', "Hello World!")

As well, edit setup.py and modify the entry_points section to include a
declaration of this new producer like so:

[moksha.producer]
hello = tutorial.producers:HelloWorldProducer

Open up a second terminal, activate your virtualenv with workon
tutorial and run the moksha-hub:

$ workon tutorial
$ python setup.py develop
$ moksha-hub

This will start up the hub which should pick up and load your
HelloWorldProducer. Keep this running in your second terminal
as you go on to create the frontend components.

Your first LiveWidget

Create a new file in tutorial/widgets.py. In it, add the following
definition:

import moksha.wsgi.widgets.api
import tw2.jqplugins.gritter

class PopupNotification(moksha.wsgi.widgets.api.LiveWidget):
 topic = "*"
 onmessage = "$.gritter.add({'title': 'Received', 'text': json});"
 resources = moksha.wsgi.widgets.api.LiveWidget.resources + \
 tw2.jqplugins.gritter.gritter_resources
 backend = "websocket"

 # Don't actually produce anything when you call .display() on this widget.
 inline_engine_name = "mako"
 template = ""

You’ll need to expose this widget and the moksha global resources to your
templates. You could do this with Pyramid’s events infrastructure and inject
them into every page that gets served, but we’ll just dumbly expose them in the
default /home view for this scaffold.

Edit tutorial/views.py and add the following imports at the top:

import tutorial.widgets
from moksha.wsgi.widgets.api import get_moksha_socket

In the same file, change the return statement of my_view() to return the
following:

return {
 'one':one,
 'project':'tutorial',
 'notification_widget': tutorial.widgets.PopupNotification,
 'moksha_socket': get_moksha_socket(request.registry.settings),
}

Finally, display the widget on your page by editing
tutorial/templates/mytemplate.pt and adding the following at the end
but just inside of the </body> tag:

<div tal:content="structure notification_widget.display()"></div>
<div tal:content="structure moksha_socket.display()"></div>

Go restart your pserve server and check out http://localhost:6543 again.
You should see popups from your PollingProducer.

See also

	Live Widgets

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

 	Getting Started with Moksha

Moksha+Flask - Hello World Tutorial

Note

You can find the source for this tutorial on github [http://github.com/mokshaproject/moksha-flask-hello_world].

Bootstrapping

Set up a virtualenv and install Moksha and Pyramid (install
virtualenvwrapper [http://pypi.python.org/pypi/virtualenvwrapper] if you haven’t already).

$ mkvirtualenv tutorial
$ pip install Flask
$ pip install moksha.wsgi moksha.hub
$ mkdir tutorial
$ cd tutorial

Copy this dummy flask app into a file called tutorial.py.
It may look familiar to you [http://flask.pocoo.org/].

from flask import Flask
app = Flask(__name__)

@app.route("/")
def hello():
 return "Hello World!"

if __name__ == "__main__":
 app.run()

Give it a run to see if it works:

python tutorial.py

Visit http://localhost:5000 to check it out. Success.

Add a configuration file

Create a development.ini file with the following contents:

[app:main]
#moksha.domain = live.example.com
moksha.domain = localhost

moksha.notifications = True
moksha.socket.notify = True

moksha.livesocket = True
moksha.livesocket.backend = websocket
#moksha.livesocket.reconnect_interval = 5000
moksha.livesocket.websocket.port = 9998

zmq_enabled = True
#zmq_strict = True
zmq_publish_endpoints = tcp://*:3000
zmq_subscribe_endpoints = tcp://127.0.0.1:3000

Enable ToscaWidgets2 and Moksha Middlewares

Wrap your app in WSGI middleware [http://flask.pocoo.org/docs/quickstart/#hooking-in-wsgi-middlewares] by
first adding the following imports to the top of your file:

from moksha.common.lib.helpers import get_moksha_appconfig
from moksha.wsgi.middleware import make_moksha_middleware
from tw2.core.middleware import make_middleware

And also edit the if __name__ == "__main__": section to look like this:

if __name__ == "__main__":
 # Load development.ini
 config = get_moksha_appconfig()

 # Wrap the inner wsgi app with our middlewares
 app.wsgi_app = make_moksha_middleware(app.wsgi_app, config)
 app.wsgi_app = make_middleware(app.wsgi_app)

 app.run()

You now have two new pieces of WSGI middleware floating under your Flask
app. Neat! Restart the app and check http://localhost:5000 to make sure
its not crashing.

See also

	Moksha Middleware

Your first Polling Producer

Go back and edit tutorial.py and add the following definition:

import datetime
import moksha.hub.api.producer

class HelloWorldProducer(moksha.hub.api.producer.PollingProducer):
 frequency = datetime.timedelta(seconds=2)

 def poll(self):
 self.send_message('hello_world', "Hello World!")

Moksha’s ability to find producers and consumers is dependent on
setuptools, so you’ll need to add a setup.py file with the
following contents:

from setuptools import setup
setup(
 name='tutorial',
 entry_points="""
 [moksha.producer]
 hello = tutorial:HelloWorldProducer
 """,
)

Open up a second terminal, activate your virtualenv with workon
tutorial and run the moksha-hub:

$ workon tutorial
$ python setup.py develop
$ moksha-hub

This will start up the hub which should pick up and load your
HelloWorldProducer. Keep this running in your second terminal
as you go on to create the frontend components.

Your first LiveWidget

Edit tutorial.py again and add the three following imports at the top:

import moksha.wsgi.widgets.api
import tw2.jqplugins.gritter
import flask.templating

Add the following widget definiton:

import moksha.wsgi.widgets.api
import tw2.jqplugins.gritter

class PopupNotification(moksha.wsgi.widgets.api.LiveWidget):
 topic = "*"
 onmessage = "$.gritter.add({'title': 'Received', 'text': json});"
 resources = moksha.wsgi.widgets.api.LiveWidget.resources + \
 tw2.jqplugins.gritter.gritter_resources
 backend = "websocket"

 # Don't actually produce anything when you call .display() on this widget.
 inline_engine_name = "mako"
 template = ""

Finally, you need to expose this widget through a Flask route. Blow away the
existing def hello() route and replace it with the following:

simple_template = """
<html>
<head></head>
<body>
Really?
{{notification_widget.display()}}
{{moksha_socket.display()}}
</body>
</html>
"""

@app.route("/")
def hello():
 config = get_moksha_appconfig()
 socket = moksha.wsgi.widgets.api.get_moksha_socket(config)
 return flask.templating.render_template_string(
 simple_template,
 notification_widget=PopupNotification,
 moksha_socket=socket,
)

Go restart your app (make sure moksha-hub is running in a second terminal) and check out
http://localhost:5000 again. You should see popups from your PollingProducer.

See also

	Live Widgets

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

 	Getting Started with Moksha

Using Moksha’s real-time pipes outside of Python

Want to add realtime functionality to your existing web site, but don’t want to
have to learn Python or TurboGears?

Thankfully, Moksha allows you to leverage it’s realtime pipes on any existing
web page without having to write a line of Python code.

This means that you can have your web site listen to topics from your message
broker, and run javascript when new messages arrive.

Subscribing to real-time message streams

All you need to do is add a single <script> tag to your web site that
specifies the topic that you wish to listen to, and the javascript function
that should be called with each new message as they arrive.

The Moksha live socket will automatically handle decoding the message body to
JSON before passing it to your callback.

<html>
 <head>
 <script src="http://code.jquery.com/jquery-latest.min.js"></script>
 </head>
 <body>
 <ul id="data"/>
 </body>
 <script>
 function consume_message(json) {
 $('').text(json.msg).appendTo('#data')
 }
 </script>
 <script type="text/javascript" src="http://localhost:8080/livesocket?topic=helloworld&callback=consume_message"></script>
</html>

Sending messages to the broker

You can easily send messages to a given topic using the moksha.send_message
function. This function will automatically handle converting your javascript
objects to JSON for you.

Send message

Note

In order for the live sockets to work properly, Moksha (specifically
Orbited) must be running under the same domain as your web site.

Note

You can disable the automatic JSON encoding/decoding by passing
json=False to the livesocket URL.

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

 	Getting Started with Moksha

Moksha Quickstart Templates

If you’re a TurboGears2 user, you’re in luck!
Moksha provides templates for easily creating basic components.

$ paster moksha --help
Usage: /usr/bin/paster moksha [options]
Create new Moksha components

Options:
 --version show program's version number and exit
 -h, --help show this help message and exit
 -l, --livewidget Create an example Moksha LiveWidget
 -u, --consumer Create an example Moksha Consumer
 -C, --controller Create an example Moksha Controller
 -P, --producer Create an example Moksha Producer
 -p PACKAGE, --package=PACKAGE
 package name for the code
 -t TOPIC, --topic=TOPIC
 The Moksha topic to utilize

Note

All of the above options can be mixed/matched and used to generate a
plugin with different components.

Creating a new moksha app with all components

$ paster moksha --livewidget --producer --consumer --controller

Quick and dirty method of running your app

This command will run the entire Moksha stack, including orbited, paster WSGI
server, and the moksha-hub, along with your application.

$ moksha start

Creating and installing an RPM for your new package

$ paver reinstall

Creating a whole new app

See:

	Moksha+TurboGears2 - Hello World Tutorial

	Moksha+Pyramid - Hello World Tutorial

	Moksha+Flask - Hello World Tutorial

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

Moksha Plugin Entry Points

When the moksha.wsgi.middleware.MokshaMiddleware is loaded, it will
automatically load all applications and widgets from those entry points,
and store them in moksha.common.utils.apps and
moksha.common.utils._widgets dictionaries. These can then be accessed
at any time by any application or widget during any request.

What is an Entry Point?

Entry points are a Python setuptools/distribute feature that allows packages to
register something under a specific key that other packages can query for.
This is how you make Moksha aware of your widgets/apps/producers/consumers.

Entry points are defined in your projects setup.py like so:

setup(name='moksha.helloworld',
 ...
 entry_points="""
 [moksha.widget]
 hellowidget = helloworld.widgets:HelloWorldWidget
 """

Mounting the root controller of your application

Moksha allows you to easily configure the root controller of your application.
You can do this by mounting your controller on the [moksha.root]
entry-point as root, like so:

[moksha.root]
root = myproject.controllers.root:RootController

See also

Writing TurboGears Controllers [http://turbogears.org/2.1/docs/main/Controllers.html]

Mounting a TurboGears application

You can easily mount TurboGears Controllers within Moksha by pointing to them in
your setup.py under the [moksha.application] entry-point.

[moksha.application]
myapp = myapplication.controllers.root:RootController

Your TG application will then be accessable via /apps/myapp in Moksha.
Moksha will also look for a model module in your application, and will call
the init_model method within it, if it exists. This is a convention used to
initialize TurboGears2 models.

Installing a ToscaWidget

You can plug an existing ToscaWidget into Moksha by adding it to the [moksha.widget] entry-point.

[moksha.widget]
jquery = tw.jquery:jquery_js

Your Widget will then be accessable via /widgets/mywidget in Moksha.

Mounting a WSGI application

You can mount an existing WSGI application by pointing to it
in the setup.py on the [moksha.wsgiapp] entry-point.

[moksha.wsgiapp]
mywsgiapp = mywsgiapp.wsgiapp:MyWSGIApplication

Your WSGI application will then be accessable via /apps/mywsgiapp in Moksha.

Warning

At the moment it is not recommened that you mount a TurboGears/Pylons app as
a WSGI application inside of Moksha, since the pylons.config objects
will conflict. This issue will be addressed in the future. Instead, you can
simply mount a Controller as a moksha.application.

Configuration

Moksha will reads every application’s production.ini or development.ini
from /etc/moksha/conf.d/$APPNAME/ upon startup and loads all of the [DEFAULT] variables into the global
pylons.config object. This enables TG2/Pylons Moksha applications to
use the config object as they would do normally. However, this requires that
applications do not have conflicting configuration variable names. Moksha will
display a warning message for each variable conflict. Resolving these can be
done by namespacing your configuration variables. For example, if your config
variable is foo=bar, you could rename it to myapp.foo=bar.

See also

Getting Started with Moksha for details on getting things up and running,
Moksha Quickstart Templates for creating new Moksha Components, and
Moksha+TurboGears2 - Hello World Tutorial for using Moksha with TurboGears2.
Moksha+Pyramid - Hello World Tutorial for using Moksha with Pyramid.
Moksha+Flask - Hello World Tutorial for using Moksha with Flask.

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

Widgets

A Widget in Moksha is simply a ToscaWidget [http://toscawidgets.org].
ToscaWidgets2 is itself a framework for building reusable web components. It
is “application-framework” agnostic like Moksha, and so can be used with other
application frameworks like TurboGears2, Pyramid, and Flask. TurboGears2 ships
Toscawidgets2 out of the box.

Along with their official documentation, you can also find great ToscaWidgets
tutorials in the TurboGears2 [http://www.turbogears.org/2.2/docs/toc.html]
and ToscaWidgets2 [http://tw2core.rtfd.org] docs.

[image: ../_images/widget.png]

Moksha Widget Docs

	Global Resource Injection
	Installing a Global Resource Widget

	LiveWidget dependency on moksha_socket

	Live Widgets
	A basic LiveWidget

	Live Feeds
	A Live Feed Demo Widget

	The Live Feed Widget

	Live Widget Interaction

	Dependency on GlobalResourceInjectionWidget

See also

Moksha Labs

External Documentation

	ToscaWidgets [http://toscawidgets.org]

	TurboGears2 Documentation [http://www.turbogears.org/2.2/docs/toc.html]

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

 	Widgets

Global Resource Injection

Moksha has plugin suport for Global Resources, which are just JavaScript or
CSS widgets that will get automatically injected in every page by the
GlobalResourceInjectionWidget.

Moksha will load all tw2.core.JSLink, tw2.core.CSSLink, and
tw2.core.Widget ToscaWidgets that are on the [moksha.global]
entry-point.

Installing a Global Resource Widget

By default Moksha includes only its live socket widget as a global resource.
Developers often want to include other resources like jQuery or jQuery UI.
Here is an example of what that might look like in your setup.py entry-points:

[moksha.global]

jquery = tw2.jquery:jquery_js
jquery_ui = tw2.jqplugins.ui:jquery_ui

LiveWidget dependency on moksha_socket

As mentioned, GlobalResourceInjectionWidget is also responsible for
rendering the moksha_socket which creates the callbacks for any LiveWidget
being rendered. Because of the way this works, you should ensure the
GlobalResourceInjectionWidget is injected last, after each LiveWidget
has been rendered.

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

 	Widgets

Live Widgets

Moksha provides a LiveWidget that handles automatically subscribing
your widget to a given message topic, or list of topics. When the widget
receives a new message, the onmessage JavaScript callback will be run by the
client with JSON data in the json variable.

[image: ../_images/live_widgets.png]

A basic LiveWidget

Below is an example of a really basic live widget. This widget subscribes to
the ‘stuff’ message topic, and will perform an alert upon new messages.

from moksha.wsgi.widgets.api.live import LiveWidget

class MyLiveWidget(LiveWidget):
 topic = 'stuff'
 onmessage = 'alert(json);'
 template = "Hi, I'm a live widget!"

Live Feeds

A Live Feed Demo Widget

from moksha.feeds.widgets.live import LiveFeedWidget

The Live Feed Widget

The LiveFeedWidget itself is just a simple LiveWidget that
uses a little bit of jQuery to add and remove feed entries from a list.

from moksha.wsgi.widgets.api.live import LiveWidget
from moksha.feeds.widgets.feed import Feed

class LiveFeedWidget(LiveWidget):
 """ A live streaming feed widget """
 params = {
 'url': 'The feed URL',
 'topic': 'A topic or list of topics to subscribe to',
 'feed': 'A moksha Feed object',
 }
 template = '${feed(id=id, url=url)}'
 onmessage = """
 $.each(json, function() {
 $("#${id} ul li:last").remove();
 $("").html(
 $("<a/>")
 .attr("href", this.link)
 .text(this.title))
 .prependTo($("#${id} ul"));
 });
 """
 feed = Feed()

Live Widget Interaction

Live Widget speaking AMQP or STOMP

[image: ../_images/live_widget_interaction.png]
Live Widget speaking WebSocket to 0mq

[image: ../_images/live_widget_interaction_websocket.png]

Dependency on GlobalResourceInjectionWidget

Under the hood, each LiveWidget depends on the
GlobalResourceInjectionWidget
to render the the javascript callbacks for their topics. Due to the way
this works, you should ensure that the global resources are injected
last, after each LiveWidget is rendered.

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

Moksha Plugin Entry Points

When the moksha.wsgi.middleware.MokshaMiddleware is loaded, it will
automatically load all applications and widgets from those entry points,
and store them in moksha.common.utils.apps and
moksha.common.utils._widgets dictionaries. These can then be accessed
at any time by any application or widget during any request.

What is an Entry Point?

Entry points are a Python setuptools/distribute feature that allows packages to
register something under a specific key that other packages can query for.
This is how you make Moksha aware of your widgets/apps/producers/consumers.

Entry points are defined in your projects setup.py like so:

setup(name='moksha.helloworld',
 ...
 entry_points="""
 [moksha.widget]
 hellowidget = helloworld.widgets:HelloWorldWidget
 """

Mounting the root controller of your application

Moksha allows you to easily configure the root controller of your application.
You can do this by mounting your controller on the [moksha.root]
entry-point as root, like so:

[moksha.root]
root = myproject.controllers.root:RootController

See also

Writing TurboGears Controllers [http://turbogears.org/2.1/docs/main/Controllers.html]

Mounting a TurboGears application

You can easily mount TurboGears Controllers within Moksha by pointing to them in
your setup.py under the [moksha.application] entry-point.

[moksha.application]
myapp = myapplication.controllers.root:RootController

Your TG application will then be accessable via /apps/myapp in Moksha.
Moksha will also look for a model module in your application, and will call
the init_model method within it, if it exists. This is a convention used to
initialize TurboGears2 models.

Installing a ToscaWidget

You can plug an existing ToscaWidget into Moksha by adding it to the [moksha.widget] entry-point.

[moksha.widget]
jquery = tw.jquery:jquery_js

Your Widget will then be accessable via /widgets/mywidget in Moksha.

Mounting a WSGI application

You can mount an existing WSGI application by pointing to it
in the setup.py on the [moksha.wsgiapp] entry-point.

[moksha.wsgiapp]
mywsgiapp = mywsgiapp.wsgiapp:MyWSGIApplication

Your WSGI application will then be accessable via /apps/mywsgiapp in Moksha.

Warning

At the moment it is not recommened that you mount a TurboGears/Pylons app as
a WSGI application inside of Moksha, since the pylons.config objects
will conflict. This issue will be addressed in the future. Instead, you can
simply mount a Controller as a moksha.application.

Configuration

Moksha will reads every application’s production.ini or development.ini
from /etc/moksha/conf.d/$APPNAME/ upon startup and loads all of the [DEFAULT] variables into the global
pylons.config object. This enables TG2/Pylons Moksha applications to
use the config object as they would do normally. However, this requires that
applications do not have conflicting configuration variable names. Moksha will
display a warning message for each variable conflict. Resolving these can be
done by namespacing your configuration variables. For example, if your config
variable is foo=bar, you could rename it to myapp.foo=bar.

See also

Getting Started with Moksha for details on getting things up and running,
Moksha Quickstart Templates for creating new Moksha Components, and
Moksha+TurboGears2 - Hello World Tutorial for using Moksha with TurboGears2.
Moksha+Pyramid - Hello World Tutorial for using Moksha with Pyramid.
Moksha+Flask - Hello World Tutorial for using Moksha with Flask.

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

 	Widgets

Global Resource Injection

Moksha has plugin suport for Global Resources, which are just JavaScript or
CSS widgets that will get automatically injected in every page by the
GlobalResourceInjectionWidget.

Moksha will load all tw2.core.JSLink, tw2.core.CSSLink, and
tw2.core.Widget ToscaWidgets that are on the [moksha.global]
entry-point.

Installing a Global Resource Widget

By default Moksha includes only its live socket widget as a global resource.
Developers often want to include other resources like jQuery or jQuery UI.
Here is an example of what that might look like in your setup.py entry-points:

[moksha.global]

jquery = tw2.jquery:jquery_js
jquery_ui = tw2.jqplugins.ui:jquery_ui

LiveWidget dependency on moksha_socket

As mentioned, GlobalResourceInjectionWidget is also responsible for
rendering the moksha_socket which creates the callbacks for any LiveWidget
being rendered. Because of the way this works, you should ensure the
GlobalResourceInjectionWidget is injected last, after each LiveWidget
has been rendered.

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

Messaging

	Topics

	Consumers
	Creating

	Installing

	Producers
	Polling Producers

	Installing

	Live Widgets
	A basic LiveWidget

	Live Feeds

	Live Widget Interaction

	Dependency on GlobalResourceInjectionWidget

	The Moksha Hub
	MokshaHub

	CentralMokshaHub

	Message Brokers
	STOMP

	AMQP

	0mq

	Messaging Scenarios

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

Topics

A “Topic” in Moksha is basically just a message queue.

By abstracting out the low-level messaging protocols and brokers, Moksha
applications can interact with “topics” without having to worry about the
underlying technology that is involved. For example, a topic could
potentially be represented by a STOMP destination, an AMQP message
queue, or a 0mq filter. These messaging backends can be swapped out
and configured without having to alter the applications that care
about those topics.

For details on how to interact with topics, see the documentation on Consumers, Producers, and The Moksha Hub.

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

Consumers

Creating

from moksha.hub.api import Consumer

class FeedConsumer(Consumer):

 # The topic to listen to.
 topic = 'moksha.feeds'

 # Automatically decode message as JSON, and encode when using self.send_message
 jsonify = True

 def consume(self, message):
 print message['topic']
 print message['body']

Note

The MokshaHub currently executes each consumer in their own
Thread, so be sure to employ thread-safety precausions when implementing
your Consumer.

Note

If you’re using AMQP, your topic can using wildcards.
http://www.rabbitmq.com/faq.html#wildcards-in-topic-exchanges

Wildcard topics do not work using STOMP.

Note

If you’re using 0mq and zmq_strict is set to False in your config file,
then your topic will behave like it usually does with 0mq. i.e.: foo will
match foobar, foobaz, and `foo. If zmq_strict is set to True then
foo will match only foo and not foobaz or foobar.

Installing

To “install” your consumer, you have to expose it on on the moksha.consumer
entry-point. This can be done by updating your applications setup.py to
make it look something like this:

entry_points="""

[moksha.consumer]
feedconsumer = myapplication.feedconsumer:FeedConsumer

"""

After modifying your entry-points, you’ll need to re-generate your project’s egg-info.

$ workon moksha
$ python setup.py egg_info
$ deactivate

Moksha will now automatically detect, instantiate, and feed your consumer.

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

Producers

Moksha offers a Producer API that allows you to easily provide data to
your message brokers. Producers are loaded and run by the MokshaHub,
isolated from the WSGI application.

The Producers contain a connection to the MokshaHub via the self.hub object.
It also provides a send_message(topic, message) method that will send your
message to the hub.

Polling Producers

The PollingProducer will automatically wake up at a given frequency
(which can be a datetime.timedelta object, or the number of a seconds), and
call the poll() method.

Below is an example of a PollingProducer that wakes up every 10
seconds, and sends a ‘Hello World!’ message to the ‘hello’ topic.

from datetime import timedelta
from moksha.hub.api.producer import PollingProducer

class HelloWorldProducer(PollingProducer):
 frequency = timedelta(seconds=10)

 def poll(self):
 self.send_message('hello', 'Hello World!')

Installing

To install your Producer, simply add it to the [moksha.producer] entry-point
in your setup.py, like so:

[moksha.producer]
hello = myproject.producers:HelloWorldProducer

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

 	Widgets

Live Widgets

Moksha provides a LiveWidget that handles automatically subscribing
your widget to a given message topic, or list of topics. When the widget
receives a new message, the onmessage JavaScript callback will be run by the
client with JSON data in the json variable.

[image: ../_images/live_widgets.png]

A basic LiveWidget

Below is an example of a really basic live widget. This widget subscribes to
the ‘stuff’ message topic, and will perform an alert upon new messages.

from moksha.wsgi.widgets.api.live import LiveWidget

class MyLiveWidget(LiveWidget):
 topic = 'stuff'
 onmessage = 'alert(json);'
 template = "Hi, I'm a live widget!"

Live Feeds

A Live Feed Demo Widget

from moksha.feeds.widgets.live import LiveFeedWidget

The Live Feed Widget

The LiveFeedWidget itself is just a simple LiveWidget that
uses a little bit of jQuery to add and remove feed entries from a list.

from moksha.wsgi.widgets.api.live import LiveWidget
from moksha.feeds.widgets.feed import Feed

class LiveFeedWidget(LiveWidget):
 """ A live streaming feed widget """
 params = {
 'url': 'The feed URL',
 'topic': 'A topic or list of topics to subscribe to',
 'feed': 'A moksha Feed object',
 }
 template = '${feed(id=id, url=url)}'
 onmessage = """
 $.each(json, function() {
 $("#${id} ul li:last").remove();
 $("").html(
 $("<a/>")
 .attr("href", this.link)
 .text(this.title))
 .prependTo($("#${id} ul"));
 });
 """
 feed = Feed()

Live Widget Interaction

Live Widget speaking AMQP or STOMP

[image: ../_images/live_widget_interaction.png]
Live Widget speaking WebSocket to 0mq

[image: ../_images/live_widget_interaction_websocket.png]

Dependency on GlobalResourceInjectionWidget

Under the hood, each LiveWidget depends on the
GlobalResourceInjectionWidget
to render the the javascript callbacks for their topics. Due to the way
this works, you should ensure that the global resources are injected
last, after each LiveWidget is rendered.

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

The Moksha Hub

MokshaHub

Moksha provides a moksha.hub.MokshaHub class that makes it simple for
applications to send messages to a given topic.

from moksha.hub.api import MokshaHub, reactor
hub = MokshaHub()
hub.send_message('topic', 'message')
reactor.run()
hub.close()

Behind the scenes, the MokshaHub will automatically connect up to
whatever message brokers are configured, and create a new session. The
send_message() method will automatically handle encoding your message to
JSON (unless you pass jsonify=False), and sending it to the appropriate
message broker.

CentralMokshaHub

The CentralMokshaHub is the primary consumer of all message topics.
It runs outside of the Moksha WSGI application stack, and is automatically
started by the $./moksha-ctl.py start or
$./moksha-ctl.py start:moksha-hub
commands (and can be started manually by running moksha-hub).

The CentralMokshaHub currently handles the following tasks:

	Feeds Consumers new messages for specific topics

	Runs all of the Producers

[image: ../_images/moksha-hub.png]

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

Message Brokers

Moksha supports configurable message flows, allowing you to utilize various
message brokers, depending on your environment.

Since Moksha employs a high-level “Topic” concept, applications can easily
communicate with them without having to worry about the underlying message
protocol.

STOMP [http://stomp.codehaus.org/Protocol]

By default, Moksha will utilize the STOMP [http://stomp.codehaus.org/Protocol] message broker, MorbidQ, which is built-in to Orbited [http://orbited.org]. You
can change the stomp_broker in the Moksha configuration file to point to a
different STOMP broker – RabbitMQ [http://rabbitmq.com] with the STOMP-adapter has been tested as
well.

Make sure Orbited is configured to proxy connections to your STOMP Broker in your /etc/orbited.cfg

[access]
* -> localhost:61613

You can also enable the built-in STOMP broker within Orbited, MorbidQ, by doing the following in the orbited.cfg:

[listen]
stomp://:61613

AMQP [http://amqp.org]

Plugging an AMQP [http://amqp.org] broker into Moksha is trivial. Simply
add an amqp_broker to your configuration, and change the live socket backend in Moksha’s development.ini or production.ini:

amqp_broker = guest/guest@localhost
moksha.livesocket.backend = amqp

Note

It’s probably best to comment out the stomp_broker when you enable AMQP
support. You can have both, but Moksha will enter a bridged mode that
may or may not work as expected.

The MokshaHub will then automatically connect up to your AMQP broker and proxy messages to the STOMP broker and Moksha Consumers.

You will then need to edit your Orbited configuration to allow proxying to your
AMQP Broker in your``/etc/orbited.cfg``

[access]
* -> localhost:5672

Note

AMQP support in Moksha has been tested with Qpid [http://qpid.apache.org].

RabbitMQ [http://rabbitmq.com] support is under development. See the Using RabbitMQ with Moksha documentation for details on testing it.

0mq [http://www.zeromq.org]

It (perhaps) goes without saying that 0mq [http://www.zeromq.org] is
brokerless. To configure what endpoints it will subscribe to and publish on,
set the following in Moksha’s development.ini or production.ini:

zmq_enabled = True
zmq_publish_endpoints = tcp://*:6543
zmq_subscribe_endpoints = tcp://127.0.0.1:6543

0mq requires that the livesocket backend be set to websocket with any port
of your choosing, like this:

moksha.livesocket.backend = websocket
moksha.livesocket.websocket.port = 9991

Note that when using the 0mq+websocket setup there is no need to run either
Orbited or qpidd.

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

 	Messaging

Messaging Scenarios

[image: ../_images/moksha-messaging-stomp.png]

	Pros:

	
	No configuration needed

	Works out-of-the-box

	Cons:

	
	Not designed for scalability

	No wildcard topic names

[image: ../_images/moksha-messaging-stomp-amqp.png]

	Pros

	
	STOMP/AMQP broker bridging

	Cons

	
	Not very well tested

	May or may not work as expected

[image: ../_images/moksha-messaging-amqp.png]

	Pros:

	
	Trivial to configure

	100% AMQP, from the browser to the broker

	Flexibility and power of AMQP queues, exchanges, routing keys, etc.

	Cons:

	
	Relatively new and not 100% complete JavaScript bindings

[image: ../_images/moksha-messaging-0mq.png]

	Pros:

	
	Uses native WebSockets, not a giant javascript shim

	Blazing fast. ~100 times faster hub processing

	Distributed. No central broker

	Only moksha-hub and the WSGI stack. No orbited, no broker.

	Cons:

	
	Uses native WebSockets, not supported on all browsers

	No built in persistance or delivery guarantee

See also

See Message Brokers for more information on configuring various
protocols and brokers with Moksha.

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

Message Brokers

Moksha supports configurable message flows, allowing you to utilize various
message brokers, depending on your environment.

Since Moksha employs a high-level “Topic” concept, applications can easily
communicate with them without having to worry about the underlying message
protocol.

STOMP [http://stomp.codehaus.org/Protocol]

By default, Moksha will utilize the STOMP [http://stomp.codehaus.org/Protocol] message broker, MorbidQ, which is built-in to Orbited [http://orbited.org]. You
can change the stomp_broker in the Moksha configuration file to point to a
different STOMP broker – RabbitMQ [http://rabbitmq.com] with the STOMP-adapter has been tested as
well.

Make sure Orbited is configured to proxy connections to your STOMP Broker in your /etc/orbited.cfg

[access]
* -> localhost:61613

You can also enable the built-in STOMP broker within Orbited, MorbidQ, by doing the following in the orbited.cfg:

[listen]
stomp://:61613

AMQP [http://amqp.org]

Plugging an AMQP [http://amqp.org] broker into Moksha is trivial. Simply
add an amqp_broker to your configuration, and change the live socket backend in Moksha’s development.ini or production.ini:

amqp_broker = guest/guest@localhost
moksha.livesocket.backend = amqp

Note

It’s probably best to comment out the stomp_broker when you enable AMQP
support. You can have both, but Moksha will enter a bridged mode that
may or may not work as expected.

The MokshaHub will then automatically connect up to your AMQP broker and proxy messages to the STOMP broker and Moksha Consumers.

You will then need to edit your Orbited configuration to allow proxying to your
AMQP Broker in your``/etc/orbited.cfg``

[access]
* -> localhost:5672

Note

AMQP support in Moksha has been tested with Qpid [http://qpid.apache.org].

RabbitMQ [http://rabbitmq.com] support is under development. See the Using RabbitMQ with Moksha documentation for details on testing it.

0mq [http://www.zeromq.org]

It (perhaps) goes without saying that 0mq [http://www.zeromq.org] is
brokerless. To configure what endpoints it will subscribe to and publish on,
set the following in Moksha’s development.ini or production.ini:

zmq_enabled = True
zmq_publish_endpoints = tcp://*:6543
zmq_subscribe_endpoints = tcp://127.0.0.1:6543

0mq requires that the livesocket backend be set to websocket with any port
of your choosing, like this:

moksha.livesocket.backend = websocket
moksha.livesocket.websocket.port = 9991

Note that when using the 0mq+websocket setup there is no need to run either
Orbited or qpidd.

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

Topics

A “Topic” in Moksha is basically just a message queue.

By abstracting out the low-level messaging protocols and brokers, Moksha
applications can interact with “topics” without having to worry about the
underlying technology that is involved. For example, a topic could
potentially be represented by a STOMP destination, an AMQP message
queue, or a 0mq filter. These messaging backends can be swapped out
and configured without having to alter the applications that care
about those topics.

For details on how to interact with topics, see the documentation on Consumers, Producers, and The Moksha Hub.

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

Consumers

Creating

from moksha.hub.api import Consumer

class FeedConsumer(Consumer):

 # The topic to listen to.
 topic = 'moksha.feeds'

 # Automatically decode message as JSON, and encode when using self.send_message
 jsonify = True

 def consume(self, message):
 print message['topic']
 print message['body']

Note

The MokshaHub currently executes each consumer in their own
Thread, so be sure to employ thread-safety precausions when implementing
your Consumer.

Note

If you’re using AMQP, your topic can using wildcards.
http://www.rabbitmq.com/faq.html#wildcards-in-topic-exchanges

Wildcard topics do not work using STOMP.

Note

If you’re using 0mq and zmq_strict is set to False in your config file,
then your topic will behave like it usually does with 0mq. i.e.: foo will
match foobar, foobaz, and `foo. If zmq_strict is set to True then
foo will match only foo and not foobaz or foobar.

Installing

To “install” your consumer, you have to expose it on on the moksha.consumer
entry-point. This can be done by updating your applications setup.py to
make it look something like this:

entry_points="""

[moksha.consumer]
feedconsumer = myapplication.feedconsumer:FeedConsumer

"""

After modifying your entry-points, you’ll need to re-generate your project’s egg-info.

$ workon moksha
$ python setup.py egg_info
$ deactivate

Moksha will now automatically detect, instantiate, and feed your consumer.

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

Producers

Moksha offers a Producer API that allows you to easily provide data to
your message brokers. Producers are loaded and run by the MokshaHub,
isolated from the WSGI application.

The Producers contain a connection to the MokshaHub via the self.hub object.
It also provides a send_message(topic, message) method that will send your
message to the hub.

Polling Producers

The PollingProducer will automatically wake up at a given frequency
(which can be a datetime.timedelta object, or the number of a seconds), and
call the poll() method.

Below is an example of a PollingProducer that wakes up every 10
seconds, and sends a ‘Hello World!’ message to the ‘hello’ topic.

from datetime import timedelta
from moksha.hub.api.producer import PollingProducer

class HelloWorldProducer(PollingProducer):
 frequency = timedelta(seconds=10)

 def poll(self):
 self.send_message('hello', 'Hello World!')

Installing

To install your Producer, simply add it to the [moksha.producer] entry-point
in your setup.py, like so:

[moksha.producer]
hello = myproject.producers:HelloWorldProducer

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

The Moksha Hub

MokshaHub

Moksha provides a moksha.hub.MokshaHub class that makes it simple for
applications to send messages to a given topic.

from moksha.hub.api import MokshaHub, reactor
hub = MokshaHub()
hub.send_message('topic', 'message')
reactor.run()
hub.close()

Behind the scenes, the MokshaHub will automatically connect up to
whatever message brokers are configured, and create a new session. The
send_message() method will automatically handle encoding your message to
JSON (unless you pass jsonify=False), and sending it to the appropriate
message broker.

CentralMokshaHub

The CentralMokshaHub is the primary consumer of all message topics.
It runs outside of the Moksha WSGI application stack, and is automatically
started by the $./moksha-ctl.py start or
$./moksha-ctl.py start:moksha-hub
commands (and can be started manually by running moksha-hub).

The CentralMokshaHub currently handles the following tasks:

	Feeds Consumers new messages for specific topics

	Runs all of the Producers

[image: ../_images/moksha-hub.png]

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

Feeds

Moksha makes it simple for applications and widgets to efficiently obtain
data from arbitrary RSS/Atom feeds. The moksha Feed object transparently
handles the fetching, parsing, and caching of feeds, making it trivial to
pull in and manipulate external data sources in your application.

When used within the Moksha Platform, the Feed object will utilize the central
global moksha.feed_cache. When used outside of the platform, it will
automatically use a local sqlite database cache.

	The Moksha Feed Widget
	Using the Feed widget

	Rendering a url with the Feed object

	Subclassing

	As ToscaWidget children

	As a generator

	Using the moksha feed cache by hand

	The Moksha Feed Stream

	Installing the mdemos.feeds app
	Configuring the Moksha Feed Aggregator

	Performing post-processing on feed entries

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

 	Feeds

The Moksha Feed Widget

Using the Feed widget

from moksha.feeds.widgets.feed import Feed
feed = Feed('myfeed')
feed(url='http://lewk.org/rss')

Rendering a url with the Feed object

feed = Feed('myfeed')
feed(url='http://lewk.org/rss')

Note

Usually you would instantiate a single Feed object somewhere in your
project, and just call it with a url when rendering it in your templates.

Subclassing

class MyFeed(Feed):
 url = 'http://foo.com/feed.xml'

myfeed = MyFeed()
myfeed() # renders the widget, usually done in the template

As ToscaWidget children

By defining your Feeds as children to a widget, ToscaWidgets1 will automatically
handle setting a unique id for your Feed object, as well as giving you the
ability access it in your template from the c context object.

from tw.api import Widget
from moksha.feeds.widgets.feed import Feed

class MyWidget(Widget):
 myfeedurl = 'http://foo.com/feed.xml'
 children = [Feed('myfeed', url=myfeedurl)]
 template = "${c.myfeed()}"

The usage for ToscaWidgets2 is quite similar.

from tw2.core import Widget
from moksha.feeds.widgets.feed import Feed

class MyWidget(Widget):
 myfeedurl = 'http://foo.com/feed.xml'
 myfeed = Feed(url=myfeedurl)
 template = "${w.myfeed()}"

As a generator

For ToscaWidgets1:

feed = Feed('myfeed', url='http://foo.com/feed.xml')
print '%d entries' % feed.num_entries()
for entry in feed.iterentries():
 print entry.title

For ToscaWidgets2:

feed = Feed(id='myfeed', url='http://foo.com/feed.xml')
print '%d entries' % feed.num_entries()
for entry in feed.iterentries():
 print entry.title

Using the moksha feed cache by hand

The moksha Feed widget automatically handles fetching and caching your feeds
using the global moksha feed cache. The moksha middleware automatically
handles setting up this object, and making it available for all of the
applications and widgets. Moksha utilizes Doug Hellmann’s feedcache module [http://www.doughellmann.com/projects/feedcache], which intelligently handles
all of the hard work for us.

Here is an example of using the feed cache to manually fetch a feed.

import moksha
feed = moksha.feed_cache.fetch('http://foo.com/feed.xml')
for entry in feed.entries:
 print entry

Note

The moksha.feed_cache object is a
paste.registry.StackedObjectProxy instance, and is setup by the
moksha.middleware.MokshaMiddleware before each request reaches
your application. Thus, it only works during requests and cannot be
used without using the MokshaMiddleware.

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

 	Feeds

The Moksha Feed Stream

The mdemos.feeds app provides a moksha Producer_ that will handle
automatically fetching, parsing, and caching feeds. Once installed, the Moksha Feed Stream will be run by the MokshaHub_.

It will automatically fetch all feeds used by the Moksha Feed object,
as well as all feeds listed in a feeds.txt file, if one exists.

Installing the mdemos.feeds app

Currently the easiest way to install the app is from the git repository

$ git clone git://github.com/ralphbean/mdemos.feeds
$ cd mdemos.feeds

From here, if you are running Moksha from an RPM installation:

$ paver reinstall

Or, if you’re running from a virtualenv installation:

$ paver install

Configuring the Moksha Feed Aggregator

The feed app can be configured with the following options in your config file:

Enable the feed aggregator in the moksha-hub
moksha.feedaggregator = True

Number of seconds between polling feeds
feed.poll_frequency = 900

Where to store the feed caches. Defaults to an in-memory cache.
#feed_cache = sqlite:///%(here)s/feeds.db

Max age (in seconds) of each feed in the cache
feed.max_age = 300

Timeout in seconds for the web request
feed.timeout = 60

The number of simultaneous connections
feed.deferred_groups = 3

Performing post-processing on feed entries

All new feed entries for a given $URL are sent to the moksha.feeds.$URL
message topic. By default only the title and url of the entry are sent to the
message broker. However, Moksha provides a simple API for writing
post-processing plug-ins that can modify the feed before it is sent to any
LiveWidgets or Consumers.

def process_feed_entry(entry):
 """ This method is called by the Moksha Feed Streamer with each feed entry.

 Here is where we do post-processing on the entry before it gets serialized
 to JSON and send to our message broker, and then the users.

 :entry: A :mod:`feedparser` feed object
 """
 return dict(author=entry['author'],
 author_link=entry['author_detail']['href'],
 content=entry['content'][0]['value'],
 author_avatar=entry['source']['icon'])

Then you simply plug this method into the moksha.feeds.post_processor entry-point:

setup(...
 entry_points="""
 [moksha.feeds.post_processor]
 myfeedprocessor = myapp.feed_processor:process_feed_entry
 """
)

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

 	Widgets

Live Widgets

Moksha provides a LiveWidget that handles automatically subscribing
your widget to a given message topic, or list of topics. When the widget
receives a new message, the onmessage JavaScript callback will be run by the
client with JSON data in the json variable.

[image: ../_images/live_widgets.png]

A basic LiveWidget

Below is an example of a really basic live widget. This widget subscribes to
the ‘stuff’ message topic, and will perform an alert upon new messages.

from moksha.wsgi.widgets.api.live import LiveWidget

class MyLiveWidget(LiveWidget):
 topic = 'stuff'
 onmessage = 'alert(json);'
 template = "Hi, I'm a live widget!"

Live Feeds

A Live Feed Demo Widget

from moksha.feeds.widgets.live import LiveFeedWidget

The Live Feed Widget

The LiveFeedWidget itself is just a simple LiveWidget that
uses a little bit of jQuery to add and remove feed entries from a list.

from moksha.wsgi.widgets.api.live import LiveWidget
from moksha.feeds.widgets.feed import Feed

class LiveFeedWidget(LiveWidget):
 """ A live streaming feed widget """
 params = {
 'url': 'The feed URL',
 'topic': 'A topic or list of topics to subscribe to',
 'feed': 'A moksha Feed object',
 }
 template = '${feed(id=id, url=url)}'
 onmessage = """
 $.each(json, function() {
 $("#${id} ul li:last").remove();
 $("").html(
 $("<a/>")
 .attr("href", this.link)
 .text(this.title))
 .prependTo($("#${id} ul"));
 });
 """
 feed = Feed()

Live Widget Interaction

Live Widget speaking AMQP or STOMP

[image: ../_images/live_widget_interaction.png]
Live Widget speaking WebSocket to 0mq

[image: ../_images/live_widget_interaction_websocket.png]

Dependency on GlobalResourceInjectionWidget

Under the hood, each LiveWidget depends on the
GlobalResourceInjectionWidget
to render the the javascript callbacks for their topics. Due to the way
this works, you should ensure that the global resources are injected
last, after each LiveWidget is rendered.

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

Widgets

A Widget in Moksha is simply a ToscaWidget [http://toscawidgets.org].
ToscaWidgets2 is itself a framework for building reusable web components. It
is “application-framework” agnostic like Moksha, and so can be used with other
application frameworks like TurboGears2, Pyramid, and Flask. TurboGears2 ships
Toscawidgets2 out of the box.

Along with their official documentation, you can also find great ToscaWidgets
tutorials in the TurboGears2 [http://www.turbogears.org/2.2/docs/toc.html]
and ToscaWidgets2 [http://tw2core.rtfd.org] docs.

[image: ../_images/widget.png]

Moksha Widget Docs

	Global Resource Injection
	Installing a Global Resource Widget

	LiveWidget dependency on moksha_socket

	Live Widgets
	A basic LiveWidget

	Live Feeds
	A Live Feed Demo Widget

	The Live Feed Widget

	Live Widget Interaction

	Dependency on GlobalResourceInjectionWidget

See also

Moksha Labs

External Documentation

	ToscaWidgets [http://toscawidgets.org]

	TurboGears2 Documentation [http://www.turbogears.org/2.2/docs/toc.html]

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

 	Widgets

Global Resource Injection

Moksha has plugin suport for Global Resources, which are just JavaScript or
CSS widgets that will get automatically injected in every page by the
GlobalResourceInjectionWidget.

Moksha will load all tw2.core.JSLink, tw2.core.CSSLink, and
tw2.core.Widget ToscaWidgets that are on the [moksha.global]
entry-point.

Installing a Global Resource Widget

By default Moksha includes only its live socket widget as a global resource.
Developers often want to include other resources like jQuery or jQuery UI.
Here is an example of what that might look like in your setup.py entry-points:

[moksha.global]

jquery = tw2.jquery:jquery_js
jquery_ui = tw2.jqplugins.ui:jquery_ui

LiveWidget dependency on moksha_socket

As mentioned, GlobalResourceInjectionWidget is also responsible for
rendering the moksha_socket which creates the callbacks for any LiveWidget
being rendered. Because of the way this works, you should ensure the
GlobalResourceInjectionWidget is injected last, after each LiveWidget
has been rendered.

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

 	Widgets

Live Widgets

Moksha provides a LiveWidget that handles automatically subscribing
your widget to a given message topic, or list of topics. When the widget
receives a new message, the onmessage JavaScript callback will be run by the
client with JSON data in the json variable.

[image: ../_images/live_widgets.png]

A basic LiveWidget

Below is an example of a really basic live widget. This widget subscribes to
the ‘stuff’ message topic, and will perform an alert upon new messages.

from moksha.wsgi.widgets.api.live import LiveWidget

class MyLiveWidget(LiveWidget):
 topic = 'stuff'
 onmessage = 'alert(json);'
 template = "Hi, I'm a live widget!"

Live Feeds

A Live Feed Demo Widget

from moksha.feeds.widgets.live import LiveFeedWidget

The Live Feed Widget

The LiveFeedWidget itself is just a simple LiveWidget that
uses a little bit of jQuery to add and remove feed entries from a list.

from moksha.wsgi.widgets.api.live import LiveWidget
from moksha.feeds.widgets.feed import Feed

class LiveFeedWidget(LiveWidget):
 """ A live streaming feed widget """
 params = {
 'url': 'The feed URL',
 'topic': 'A topic or list of topics to subscribe to',
 'feed': 'A moksha Feed object',
 }
 template = '${feed(id=id, url=url)}'
 onmessage = """
 $.each(json, function() {
 $("#${id} ul li:last").remove();
 $("").html(
 $("<a/>")
 .attr("href", this.link)
 .text(this.title))
 .prependTo($("#${id} ul"));
 });
 """
 feed = Feed()

Live Widget Interaction

Live Widget speaking AMQP or STOMP

[image: ../_images/live_widget_interaction.png]
Live Widget speaking WebSocket to 0mq

[image: ../_images/live_widget_interaction_websocket.png]

Dependency on GlobalResourceInjectionWidget

Under the hood, each LiveWidget depends on the
GlobalResourceInjectionWidget
to render the the javascript callbacks for their topics. Due to the way
this works, you should ensure that the global resources are injected
last, after each LiveWidget is rendered.

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

Moksha Middleware

Moksha can run as an application serving platform on its own, but
also contains a small piece of WSGI middleware that provides your
application with a lot of additional functionality as well. This allows you to use Moksha in your existing WSGI [http://www.python.org/dev/peps/pep-0333/] application.

It currently provides the following functionality

	Sets up the feed storage and cache for widgets

	Handles dispatching moksha applications, which can be any WSGI app or Controller.

	Handles dispatching to individual widgets, which are simply ToscaWidgets [http://toscawidgets.org]

	Sets up SQLAlchemy database engines for each application

	Loads all application configuration

	Initializes the Live Widgets callback registry

	Initializes applications data models

Using the MokshaMiddleware

Using the MokshaMiddleware with an existing WSGI application is quite
simple. It will look a bit different with each framework, but here is
how it looks in TurboGears2. If you’re using Moksha as a stand-alone platform, this is automatically setup for you.

"""TurboGears middleware initialization"""
from myapp.config.app_cfg import base_config
from myapp.config.environment import load_environment

make_base_app will wrap the TG2 app with all the middleware it needs.
make_base_app = base_config.setup_tg_wsgi_app(load_environment)

def make_app(global_conf, full_stack=True, **app_conf):
 from moksha.middleware import make_moksha_middleware
 app = make_base_app(global_conf, wrap_app=make_moksha_middleware,
 full_stack, **app_conf)
 return app

Note

It currently requires to be wrapped in the paste.registry [http://pythonpaste.org/modules/registry.html] WSGI middleware.
TurboGears2 allows us to easily insert middleware directly on top of the raw
application, so we then have the ability to use the paste.registry,
sessions, and caching.

Moksha’s Full Platform WSGI Stack

Not only can Moksha be inserted into any existing WSGI [http://wsgi.org]-compliant application,
but on it’s own offers a comprehensive top-to-bottom middleware stack that
provides a vast plethora of additional functionality.

[image: ../_images/moksha-middleware.png]

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moksha 1.0.0 documentation

Hacking with Moksha

Setting up your RPM/virtualenv development environments

	RPM mod_wsgi installation (Red Hat, Fedora, etc.):

		Setting up a Moksha RPM & mod_wsgi environment (Fedora, RHEL, CentOS)

	virtualenv installation (OSX, Ubuntu, etc.):

		Virtualenv installation (Other Linux distros, OSX, Windows, etc)

Getting the code

$ git clone git://git.fedorahosted.org/git/moksha
$ cd moksha/

Bootstrapping Your Environment

Definitely get and set up the awesome virtualenvwrapper [http://pypi.python.org/pypi/virtualenvwrapper] first.

$ mkvirtualenv moksha

There is a script called moksha/.travis-dev-setup.sh that simply loops over
moksha.common, moksha.hub, and moksha.wsgi and runs python
setup.py develop in each one.

$./.travis-dev-setup.sh

Run the tests

$./.travis-run-tests.sh

Freezing requirements

$ pip freeze -E ~/.virtualenvs/moksha -r requirements.txt production/stable-reqs.txt

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Moksha 1.0.0 documentation

Deployment

Installing and configuring the Moksha mod_wsgi environment

Setting up a Moksha RPM & mod_wsgi environment (Fedora, RHEL, CentOS)

Serving ToscaWidgets static resources

Deploying projects which use ToscaWidgets2 [http://tw2core.readthedocs.org/en/latest/deploy/]

Once extracted, comment out the ToscaWidgets alias in your
/etc/httpd/conf.d/moksha.conf.

Setting up an AMQP message broker

In production you can easily switch to an enterprise-grade message broker, such
as Apache Qpid [http://qpid.apache.org].

See the documentation on Message Brokers for details on how to hook up an AMQP broker.

See also

If you’re interested in using RabbitMQ with Moksha, see the Using RabbitMQ with Moksha
docs. Warning: it’s not very well tested or supported, yet.

Setting up memcached

After installing memcached, you’ll want to update your production.ini configuration
to utlize the memcached Beaker extension. This example uses two memcached servers.

beaker.cache.type = ext:memcached
beaker.cache.url = memcached1;memcached2

See also

Caching with TurboGears <http://turbogears.org/2.1/docs/main/Caching.html>

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Moksha 1.0.0 documentation

Index

 Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

 _static/live_widget_interaction_websocket.png
Browser

Moksha Hub

Live Widget

Je—>

WebSocket

«—

WebSocket

—

WebSocket Server

omq

_static/hello-evalexception.jpg
(<[>][(&) [+] @ hup: siocainosts0sonello o cooge)

Module genshi.template.eval:136 in evaluate & view r
Module 2:10 in <Expression u'now.strftime('3¥')"> &
>>>data
[{}, {'select': <function select at 0x25551£0>}, {'select': <function select at 0x2555070>},
('XML': <function XML at 0x17£7£70>, 'tg flash': '', ‘header': <function header at 0x24fbib0>,
‘defined’: <function defined at 0x24£b270>, 'sidebar_top': <function sidebar top at
0x24£b3£0>, 'tmpl_context': <pylons.util.AttribSafeContext0bj at 0x23fbel0 action=u'route’,
controller=u'root', controller url=u'hello’, environ={'routes.route': <routes.base.Route
object at 0x2327e50>, 'H...ate'), form errors=(}, form values=UnicodeMultiDict([]),
pylons=<pylons.util.PylonsContext object at 0x23fb910>, start responses<function
repl_start response at 0x24£b1£0>, url=u'hello’, w=(]>, 'value of': <function value of at
0x24£b230>, 'HIML': <function HTML at 0x17b38b0>, 'sidebar bottom': <function sidebar_bottom
at 0x24£b430>, 'tg': <module 'tg’ from '/Users/markramm-
christensen/python/turbogears/trunk/tg/__init_.pyc'>, 'ET': <function ET at 0x17£2bb0>,
‘footer': <function footer at 0x24fb530>, 'resources': (}}]
data ({), {'select': <function select at 0x25551£0>), {'select': <function select at 0x2555070sg |
view
<< <div class="foottext">
<p>TurboGears 2 is a open source front-to-back web development
</div>
</aiv>
Module genshi.template.eval:267 in lookup_attr @ view
Module genshitemplate.eval:236 in _die ® view
UndefinedError: "now" not defined S

_static/comment-bright.png

_static/moksha-features.png
WSGI middleware stack AMQP Messaging Hub

Low-Latency Browser Socket

Live Widget Creation API

Moksha Features

Plugin Infrastructure

Resource Connectors

Highly-Scalable Architecture Expert System

_static/moksha-icon.png

_static/file.png

_static/contents.png

_static/moksha-hub.png
Moksha Hub

Plugin loader

Event loop reactor

Plugins

Consumers [| Producers

Protocol Translator

AMQp | sTomp omq

_static/preview.png

_static/moksha-messaging-stomp.png
Rapid development deployment

Moksha Hub

Producers

Consumers.

_static/minus.png

_static/top.png

_static/moksha-technology.png
RabbitMQ

AMQP

Moksha Technology

TurboGears2

ToscaWidgets

repoze.who
repoze.what
repoze.tm2
repoze.squeeze
repoze.profile
Beaker
ToscaWidgets

_static/comment.png

_static/moksha-middleware.png
Moksha middleware stack

Optional middleware

moksha.middleware.csrf
Cross-site request forgery protection

moksha.middleware.extensionpoint
Moksha extension point middleware

moksha.middleware.connector
Moksha connector middleware

repoze.profile
brofiiing

repoze.squeeze
Resource compression

TurboGears2 Middleware

Routes
Application routing/dispatching

Beaker
Session management
Caching layer

ToscaWidgets
Widget resource injection

repoze.who
Authentication

repoze.what
Authorization

repoze.tm2
Transaction management

Paste
Registry manager

‘WebError
Error handling & Debugging

Moksha Middleware
Applications Widgets

Your Application

_static/jqplotdemo.png
Welcome to TurboGears 2
The Python web metaframework

_static/moksha-messaging-stomp-amqp.png
Bringing an AMQP broker into the mix

Orbited

Moksha Hub

Producers

Consumers.

_static/live_widgets.png
Live Widget

Topic(s)

On message callback

Server side logic

JS & CSS resources

Widget template

_static/moksha-architecture.png

_static/widget.png
Widget

Server side logic

JS & CSS resources

Template

_static/hello-oops.jpg
(e Lo HEILI® v tocaostzasometo - CETD

Traceback Extra Data Template Source

Error Traceback:
~UndefinedError: "now" not defined View as: Interactive | Text | XML (full)

URL: http://localhost:8080/hello

Module weberror.evalexception.middieware:364 in respond @ view

>> app_iter = self.application(environ, detect start response)
Module toscawidgets. middieware:40 in _call @ view

>> return self.usgi app(environ, start response)

Module paste.registry:334 in __call, B view

>> app_iter = self.application(environ, star
Module toscawidgets.middleware:55 in wsgi_app ® view

>> app_iter = self.application(environ, start_response)

Module beaker.middieware:74 in_call @ view
>> return self.app(environ, start response)

Module beaker.middleware:145 in _call @ view

>> return self.wrap app(environ, session start response)
Module routes.middleware:99 in _call__ @ view

>> response = self.app(environ, start_response)
Module pylons.wsgiapp:95 in _call B view

>> response = self.dispatch(controller, environ, start_response)
Module pylons.wsgiapp:259 in dispatch & view - o

>> return controller(environ, start_response)

_static/moksha-messaging-0mq.png
0mq with Websockets

Moksha Hub

WebSocket Server

e —
Omaq service

Producers

Consumers

_—
¢ 4’

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/navigation.png

_static/up-pressed.png

_static/nocomment.png

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/hovercomment.png

_static/moksha-messaging-amqp.png
100% AMQP

Moksha Hub

Producers

Consumers.

< zmov / —> | Qpi

_static/live_widget_interaction.png
Browser

(Live widget] 4—»|[Live Socket amop;sTomp /—p [Orbited |4—»| Message broker

_images/moksha-messaging-stomp.png
Rapid development deployment

Moksha Hub

Producers

Consumers.

_images/moksha-middleware.png
Moksha middleware stack

Optional middleware

moksha.middleware.csrf
Cross-site request forgery protection

moksha.middleware.extensionpoint
Moksha extension point middleware

moksha.middleware.connector
Moksha connector middleware

repoze.profile
brofiiing

repoze.squeeze
Resource compression

TurboGears2 Middleware

Routes
Application routing/dispatching

Beaker
Session management
Caching layer

ToscaWidgets
Widget resource injection

repoze.who
Authentication

repoze.what
Authorization

repoze.tm2
Transaction management

Paste
Registry manager

‘WebError
Error handling & Debugging

Moksha Middleware
Applications Widgets

Your Application

_images/live_widget_interaction_websocket.png
Browser

Moksha Hub

Live Widget

Je—>

WebSocket

«—

WebSocket

—

WebSocket Server

omq

_images/moksha-hub.png
Moksha Hub

Plugin loader

Event loop reactor

Plugins

Consumers [| Producers

Protocol Translator

AMQp | sTomp omq

_images/moksha-messaging-stomp-amqp.png
Bringing an AMQP broker into the mix

Orbited

Moksha Hub

Producers

Consumers.

_images/live_widgets.png
Live Widget

Topic(s)

On message callback

Server side logic

JS & CSS resources

Widget template

_static/tg2_files.jpg
The default paste ini
used for starting up

your TurboGears 2
Senver.

handles Exceptions.
defined in this fle.

this folder.

e

Static fles used in
your site go here.

—

be found in this
folder.

Duh. This folder
holds your tests.

D —

Tl helloworld
development.ini
& hellowortd
_init_py
& config
_init_py
app_clg.py
environment.py
middleware.py
(8 controllers
init_py
error.py
root.py
seccpy
template.py
& i18n
& b

_init_py
app_globals.py
base.py
helpers.py

(8 model
@ public
(& templates
3 tests
websetup.py

@ helloworld.egg:
README Xt
setp.clg
sewp.py
setup.pyc

test.ini

“The i file used
when running

nosetests.

[

here.

[

options are stored.

I

inthis project.

I

‘application
installation.

|

This s created by
setuptools and is not
normally modifiec.

setup.py and
setup.cfg define how
1o install your
package

|

_static/moksha-light.png
M O K J H QO

contents.html

 Navigation

 		
 index

 		Moksha 1.0.0 documentation »

Moksha Documentation contents

		The Vision
		What is Moksha?
		A Platform

		A Framework

		An Architecture

		A Hub

		Data Aggregation

		Data Interpretation
		Live streams

		Consumers

		Extension Points

		Data Persistence

		Data Visualization
		Live Widgets

		Scalability

		Moksha Architecture
		Moksha Features
		WSGI Middleware Stack

		Messaging Hub

		Low-latency Browser Socket

		Plugin Infrastructure

		Widget Creation API

		The technology that powers Moksha
		Python

		Twisted

		ToscaWidgets2

		Templating language of your choice

		jQuery

		Orbited

		js.io

		AMQP/Qpid

		0mq

		Architecture Interaction

		Getting Started with Moksha
		Setting up a Moksha RPM & mod_wsgi environment (Fedora, RHEL, CentOS)
		Installing the Moksha Apache/mod_wsgi server

		Running Moksha

		Running Orbited

		Running the Moksha Hub

		Install the dependencies and setup your RPM tree

		Watching the logs

		Virtualenv installation (Other Linux distros, OSX, Windows, etc)
		Installing the necessary dependencies

		Install moksha

		Moksha+TurboGears2 - Hello World Tutorial
		Bootstrapping

		Enable ToscaWidgets2

		Enabling the Moksha Middleware

		Provide some configuration for Moksha

		Your first Polling Producer

		Your first LiveWidget

		Moksha+Pyramid - Hello World Tutorial
		Bootstrapping

		Enable ToscaWidgets2 and Moksha Middlewares

		Provide some configuration for Moksha

		Your first Polling Producer

		Your first LiveWidget

		Moksha+Flask - Hello World Tutorial
		Bootstrapping

		Add a configuration file

		Enable ToscaWidgets2 and Moksha Middlewares

		Your first Polling Producer

		Your first LiveWidget

		Using Moksha’s real-time pipes outside of Python
		Subscribing to real-time message streams

		Sending messages to the broker

		Moksha Quickstart Templates
		Creating a new moksha app with all components

		Quick and dirty method of running your app

		Creating and installing an RPM for your new package

		Creating a whole new app

		Moksha Plugin Entry Points
		What is an Entry Point?

		Mounting the root controller of your application

		Mounting a TurboGears application

		Installing a ToscaWidget

		Mounting a WSGI application

		Configuration

		Widgets
		Moksha Widget Docs
		Global Resource Injection
		Installing a Global Resource Widget

		LiveWidget dependency on moksha_socket

		Live Widgets
		A basic LiveWidget

		Live Feeds
		A Live Feed Demo Widget

		The Live Feed Widget

		Live Widget Interaction

		Dependency on GlobalResourceInjectionWidget

		External Documentation

		Widgets
		Moksha Widget Docs
		Global Resource Injection
		Installing a Global Resource Widget

		LiveWidget dependency on moksha_socket

		Live Widgets
		A basic LiveWidget

		Live Feeds
		A Live Feed Demo Widget

		The Live Feed Widget

		Live Widget Interaction

		Dependency on GlobalResourceInjectionWidget

		External Documentation

		Moksha Plugin Entry Points
		What is an Entry Point?

		Mounting the root controller of your application

		Mounting a TurboGears application

		Installing a ToscaWidget

		Mounting a WSGI application

		Configuration

		Messaging
		Topics

		Consumers
		Creating

		Installing

		Producers
		Polling Producers

		Installing

		Live Widgets
		A basic LiveWidget

		Live Feeds
		A Live Feed Demo Widget

		The Live Feed Widget

		Live Widget Interaction

		Dependency on GlobalResourceInjectionWidget

		The Moksha Hub
		MokshaHub

		CentralMokshaHub

		Message Brokers
		STOMP

		AMQP

		0mq

		Messaging Scenarios

		Moksha Middleware
		Using the MokshaMiddleware

		Moksha’s Full Platform WSGI Stack

		Hacking with Moksha
		Setting up your RPM/virtualenv development environments

		Getting the code

		Bootstrapping Your Environment

		Run the tests

		Freezing requirements

		Deployment
		Installing and configuring the Moksha mod_wsgi environment

		Serving ToscaWidgets static resources

		Setting up an AMQP message broker

		Setting up memcached

		Copyright

		License

 © Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

_images/live_widget_interaction.png
Browser

(Live widget] 4—»|[Live Socket amop;sTomp /—p [Orbited |4—»| Message broker

_images/moksha-messaging-amqp.png
100% AMQP

Moksha Hub

Producers

Consumers.

< zmov / —> | Qpi

_images/moksha-architecture.png

_images/widget.png
Widget

Server side logic

JS & CSS resources

Template

search.html

 Navigation

 		
 index

 		Moksha 1.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

license.html

 Navigation

 		
 index

 		Moksha 1.0.0 documentation »

License

Moksha is released under the Apache 2.0 license.

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

 © Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

copyright.html

 Navigation

 		
 index

 		Moksha 1.0.0 documentation »

Copyright

Moksha and this documentation is:

Copyright © 2008-2009 Red Hat, Inc.

See License for complete license and permissions information.

 © Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

main/MokshaLabs.html

 Navigation

 		
 index

 		Moksha 1.0.0 documentation »

Moksha Labs

The Moksha Labs is an experimental R&D playground for reusable apps & widgets.

		Live Widgets

		Feeds

 © Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

_images/moksha-messaging-0mq.png
0mq with Websockets

Moksha Hub

WebSocket Server

e —
Omaq service

Producers

Consumers

_—
¢ 4’

main/RabbitMQ.html

 Navigation

 		
 index

 		Moksha 1.0.0 documentation »

Using RabbitMQ with Moksha

Moksha is currently being tested with the RabbitMQ AMQP message broker.
Eventually, it should be able to work out of the box with any AMQP broker out
there, but for now we need RabbitMQ because it has STOMP bindings. Since the
AMQP javascript bindings are currently under development, our widgets have to
speak in the STOMP protocol to the broker, through Orbited.

Install and run RabbitMQ

Moksha comes with a simple run script that should take care of everything for
you.

yum -y install erlang{,-esdl}
$ cd rabbitmq
$./run

Configure Moksha to use RabbitMQ.

Edit Moksha’s orbited.cfg and comment out the stomp listener.

This enables Orbited's built-in MorbidQ message queue.
Comment this out if to use your own, eg: RabbitMQ
#stomp://:61613

Then, edit Moksha’s development.ini to point to your RabbitMQ broker.

[DEFAULT]
stomp_broker = localhost
stomp_port = 61613
stomp_user = guest
stomp_pass = guest

Production modifications

Change the password of the guest account

rabbitmqctl change_password username newpassword

Then open Moksha’s development.ini and set the stomp_user and
stomp_pass to your newly set credentials.

 © Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

main/CSRFProtection.html

 Navigation

 		
 index

 		Moksha 1.0.0 documentation »

Cross-site Request Forgery Protection

In older versions, Moksha offered a layer of CSRF protection [http://en.wikipedia.org/wiki/Cross-site_request_forgery] for authenticated
users. This was moved to python-fedora [https://fedorahosted.org/python-fedora/].

 © Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

main/MokshaCLI.html

 Navigation

 		
 index

 		Moksha 1.0.0 documentation »

The Moksha Command-Line Client

The moksha command-line tool can be used to perform various tasks, such as
starting up the entire Moksha stack for quick development/deployment, listing
installed componets, and sending messages to the broker. It is a fairly new
piece of Moksha, and will grow more features in the future.

$ moksha --help
Usage: moksha [command]

 The Moksha Command-line Interface

Options:
 -h, --help show this help message and exit
 --start Start Moksha
 --list List all installed Moksha components
 --send Send a message to a given topic. Usage: send <topic> <message>

 © Copyright 2008-2010, Red Hat, Inc.
 Last updated on Sep 25, 2014.
 Created using Sphinx 1.2.2.

